Орехов Виктор, Международный институт менеджмента ЛИНК, Директор департамента специальных программ

About the pairwise relationship of technological revolutions

О парной взаимосвязи технологических революций

В периоды кризисов особенно актуальным является вопрос прогнозирования их причин, периодичности и последствий. Исследований на данную тему выполнено значительное количество и важная роль среди них принадлежит Н. Д. Кондратьеву¹, изучившему феномен длинных волн. Однако разные авторы находят различные причины цикличности развития и доминирующую теорию выделить сложно. В данной работе предпринята попытка найти причины современного экономического кризиса в рамках рассмотрения развития человечества, как единой системы.

1. Технологические революции. Для того чтобы выявить периодичность следования технологических революций рассмотрим отмеченные различными авторами кризисные, поворотные или революционные даты долговременного характера в пределах нашей эры, которые приведены в таблице 1.

	,	2 3 4 5 6 7 8 9
Таблица 1. Датировка технологических	: революиий разными	авторами

Автор	1	2	3	4	5	6	7	8	9	10
Кондратьев Н. Д.					1789	1845	1898	1949	1985	2018
Шумпетер Й. А.					1785	1845	1900	1950	1990	2020
Глазьев С. Ю.					1770	1830	1880	1930	1970	2010
Яковец Ю. В.	450	1350			1731				1972	
Татеиси К.	700	1302			1765	1876		1945	1974	2005
Дьяконов И. М.	540		1540			1845		1945		
Капица С. П.	500		1500			1840		1955		2000
Молчанов А.В.	630	1325		1674		1848		1934	1978	
Bunch D и др.	530		1453	1660	1735	1820	1895	1945	1972	2003

Видно, что некоторые из этих дат считают важными для развития человечества большинство из авторов, а некоторые – далеко не все. Отметим также, что в ряде работ неявно отмечена неравнозначность разных технологических революций.

¹ Кондратьев Н. Д. Большие циклы конъюнктуры // Вопросы конъюнктуры. 1925. Т. І. Вып. 1. С. 28-79.

² Шумпетер Й. А. Теория экономического развития. М., 1982.

 $^{^3}$ Глазьев С. Ю., Львов Д. С. Теоретические и прикладные аспекты управления НТП // Экономика и математические методы. 1986. № 5. С. 793-804.

⁴ Яковец Ю. В. Циклы. Кризисы. Прогнозы. М., 1999. С. 230-241, 252-261. http://abuss.narod.ru/Biblio/jakovets.htm.

⁵ Кадзума Татеиси Вечный дух предпринимательства. Практическая философия бизнесмена. М.: Московский бизнес, 1990. 222 с.

⁶ Панов А. Д. Сингулярность Дьяконова // Русская Физическая Мысль. 2011. № 1-12. С. 68-78.

⁷ Капица С. П. Гиперболический путь человечества. М.: Тончу, 2009.

⁸ Молчанов А. В. Развитие теории С. П. Капицы. Гипотеза сети сознания // Око планеты. 2009. http://oko-planet.su/science/ scienceclassic/page,1,3371-a.v.-molchanov-razvitie- teorii-s.p.-kapicy.html

⁹ Bunch B. Hellemans A. The history of science and technology. Houghton Mifflin company. Boston -New York, 2004.

Так современная схема периодизации длинных волн¹ (рис. 1) демонстрирует, что глубина спада первой и третьей волн Кондратьева явно меньше, чем второй и четвертой.

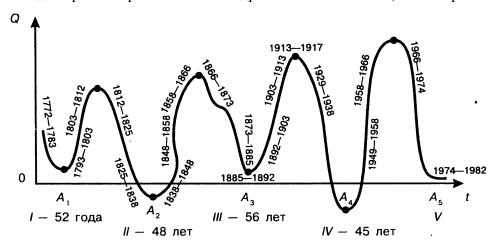


Рис.1. Современная периодизация длинных волн

Аналогичную закономерность можно заметить и на графике темпов годового роста мирового $BB\Pi^2$ (рис. 2). Видно, что глубина спада, соответствующего кризису в области 1880-1900 гг., относительно невелика по сравнению с 1931-1935 гг. (здесь спады 1915-1920 и 1940-1945 гг. соответствуют мировым войнам).

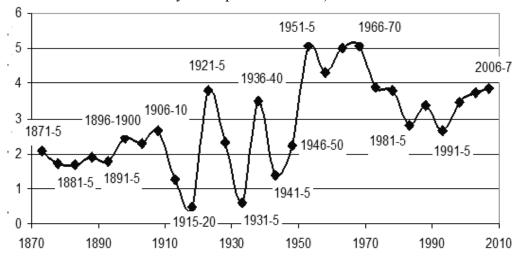


Рис. 2. Темпы роста мирового ВВП, %

Второй интересный факт заключается в том, что если исключить столбцы № 3, 5, 7, относительно редко отмеченные в табл. 1, то оставшиеся образуют последовательность дат - \mathbf{T}_n , промежутки между которыми - $\Delta \mathbf{T}_{n+1} = \mathbf{T}_{n+1}$ - \mathbf{T}_n представляют собой геометрическую прогрессию со знаменателем — 1/2. В этой последовательности продолжительность n+1 эпохи — $\Delta \mathbf{T}_{n+1} = \Delta \mathbf{T}_1 / 2^n$. Если за начальную революцию выбрать условную дату феодальной революции — $\mathbf{T}_0 = 630$ год, то, просуммировав данную последовательность при $\Delta \mathbf{T}_1 = 696$ лет, получим, что даты последующих революций будут выражаться формулой:

$$T_n = T_0 + 2 \cdot 696 \cdot (1 - 2^{-n})$$
 (1)

² Системный мониторинг. Глобальное и региональное развитие / Отв. ред.: Д. А. Халтурина, А. В. Коротаев. М.: Либроком / URSS, 2010. С. 189–229.

¹ Экономическая теория: Учебник / Под ред. В.И. Видяпина, А.И. Добрынина, Г.П. Журавлевой, Л.С.Тарасевича. М.: ИНФРА-М, 2007. 672 с.

Данная закономерность связана с гиперболическим законом роста численности человечества до 1960 года.

2. Волны «предвестники». Вернемся к рассмотрению тех волн (революций, сдвигов, кризисов), которые не входят в последовательность (1). Они также достаточно мощные и некоторые из них широко известны в истории человечества, в частности: «Первая промышленная революция», произошедшая около 1790 года. Ориентировочно они происходят между более мощными волнами, как показано в таблице 1. Кроме того, эти дополнительные волны служат своего рода «предвестниками», по появлению которых можно судить о следующей более мощной технологической революции.

Логично предположить, что эти «предвестники» разбивают технологические эпохи так, что полученные временные интервалы ΔT_n образуют единую последовательность, представляющую собой геометрической прогрессию со знаменателем равным корню квадратному из 0,5, т.е. $(0,5)^{0,5}\approx 0,707$. При этом продолжительность эпох между технологическими революциями будет выражаться формулой:

$$\Delta T_{n+1} = \Delta T_n / 2^{0,5} = \Delta T_1 / 2^{0,5n}$$
 (2)

Даты соответствующих технологических сдвигов, включая и волны «предвестники», приведены в таблице 2 (здесь $\Delta T_1 = 578$ лет). Там же для сравнения даны даты, представленные в работах некоторых из классиков данного направления. Здесь даты революций указаны с точностью до 1 года, поскольку формула (2) при округлении будет давать значительные погрешности на больших промежутках времени. Однако ясно, что реальные технологические сдвиги происходят не точно в указанные даты и более корректно округлять их примерно до десятилетий.

Tab	лица 2. Даты	технологических	рево	олюций, в	зключая (кпредвест	ников»

n	T _n	Революция (эра)	Кондра- тьев	Глазь- ев	Дьяко- нов	Капица	Молча- нов
0.	52	Начало христианской эры					
1.	630	Феодальная			540	500	630
2.	1038	Предвестник ремесленной					
3.	1325	Ремесленная (проторенессанс)					1325
4.	1530	Возрождение			1540	1500	
5.	1674	Классическая наука					1674
6.	1776	Первая промышленная	1789	1770			
7.	1848	Вторая промышленная	1845	1830	1845	1840	1848
8.	1899	Предвестник НТР	1898	1880			
9.	1935	Научно-техническая	1949	1930	1945		1934
10	1961	Предвестник кибернетической		1970		1955	
11	1978	Кибернетическая	1985				1978
12	2005	Предвестник биотехнологической	2018	2010		2000	
13	2040	Биотехнологическая				2050	

Видно, что, определенные таким образом даты революций № 7 и 9 (табл. 2), достаточно хорошо соответствуют двум из волн Н. Д. Кондратьева, а дата революции № 5 – началу эпохи «Возрождения». Однако появляются еще три даты, не отмеченные ранее: начало нашей эры (~52 г.), 1038 г. и 1960 г., которые можно трактовать, как предшественники феодальной, ремесленной и кибернетической революций.

3. Инновационный профиль технологических волн. Интересно исследовать изменение частоты появления изобретений в зависимости от предложенных дат технологических революций. Для этого воспользуемся статистическими данными, в которых дано число запатентованных за год изобретений в мире¹ - Н по отношению к численности человечества — N в период с 1883 по 2008 годы, а также расчетное количество патентов за период с 1450 по 1883 годы, определенное по числу важных изобретений в мире за это время².

При этом будем рассматривать соответствующие революции попарно — революция предвестник и основная. Для того чтобы сравнить профили активности патентования, нормируем значения Н к среднему по профилю за каждую пару революций и среднее значение Н приравняем к уровню 50%. Соответствующие профили представлены на рис. 3. По оси абсцисс здесь отложена точка от начала революции, причем точке 1 соответствует начало революции предвестника, точке 11 — начало основной технологической революции, а точке 21 — конец цикла и начало следующей революции предвестника.

Рис. 3. Относительные профили патентования технологических революций

Характерной особенностью этих профилей является то, что революция «предвестник», как правило, начинается с роста патентования и максимум инноваций достигается вблизи ее окончания. Основная же революция начинается со спада патентования, а затем наблюдается рост числа патентов в преддверии новой революции «предвестника». Вместе с тем, профили технологических революций в различные эпохи достаточно сильно различаются, что свидетельствует о значительной случайной компоненте и влиянию более кратковременных экономических циклов.

4. Цикл оборота знания. Для того чтобы понять причины инновационных сдвигов, рассмотрим деятельность человечества, как системы. В наиболее общем виде ее можно представить так, как показано на рис. 3.

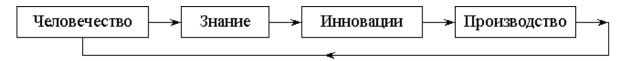


Рис. 4. Место знаний и инноваций в деятельности человечества

¹ Мировые показатели интеллектуальной собственности за 2012 год.: Доклад Всемирной организации интеллектуальной собственности. Женева. PR/2012/726, 2012. http://www.wipo.int/ipstats/en/wipi/index.html ² Немцов Э. Ф. Человечество становится всё изобретательнее. 2011. http://nemtsov.ners.ru/articles/chelovechestvo-stanovitsya-vs-izobretatelnee.html

Для того чтобы понять, как работает данная система, рассмотрим, как ведут себя компоненты этой цепочки.

<u>Человечество.</u> В работах С. П. Капицы ¹ было показано, что человечество развивается, как единая система, и именно это позволило ему на протяжении примерно полутора миллионов лет расти с темпами, более быстрыми, чем экспонента, а именно по гиперболическому закону:

$$N = C/(T_1-T) \approx 200 / (2025-T)$$
 млрд чел. (3)

Скорость роста человечества в этот период была пропорциональна квадрату числа людей $dN/dT \sim N^2$ (здесь N — число людей, T — время). После 1960 года наступает период «демографического перехода» и число людей растет с уменьшающимся темпом, стремясь к максимальному значению около 10 млрд человек.

Знание. Вторым важным элементом приведенного выше цикла является знание человечества. Нам важно выделить то знание, которое является существенным для развития человечества, как единой системы и является питательной средой для инноваций, производства, науки и благоустройства жизни людей. Парадоксально, что современная наука не смогла до сих пор сделать корректные оценки вклада знания в развитие человечества. Это связано с разнообразием видов знаний и сложностью оценки их значимости.

Для оценки объема знаний человечества используем данные по объему книг в библиотеке конгресса США в 1960^2 и 2000^3 гг. (9 и 18 млн у.к. соответственно), в Александрийской библиотеке (~80 000 у.к.) и в период возникновения человечества (~20 у.к.). Здесь в качестве единицы знания была принята «условная книга» - у.к., имеющая при оцифровании объем 1 Мбайт. Полученные оценки объема знаний и их связь с ростом численности человечества приведены в табл. 3.

No	Источник	Год от	Насел.	Объем	Знаний
		начала	Земли,	знаний,	у.к. на
		н.э.	млн.	тыс. у.к.	тыс. чел.
1.	Библиотека конгресса	2000	6 000	18 000	3,0
2.	Библиотека конгресса	1960	3 077	9 000	2,9
3.	Александрийская библиотека	-300	86	80	0,9
4.	Возникновение человека	-1 600 000	0,1	0,02	0,2

Таблица 3. Объем знаний человечества

Как видно из таблицы 3, объем знаний в расчете на одного человека меняется по времени относительно медленно. Таким образом, основным параметром, влияющим на объем знания человечества - \mathbf{Z} , является число людей $\mathbf{Z} \sim \mathbf{N}$. Соответственно для аппроксимации мирового объема знаний можно использовать формулу типа гиперболы:

$$Z \approx 1.5 \cdot 10^9 / (2025 - T)^{1.25}$$
 (4)

Данная формула (4) верна в период гиперболического роста человечества (до $1970 \, \Gamma$.). Используя формулу (3) можно получить выражение для объема знаний, корректное и в период демографического перехода⁵

$$Z \approx 20 \cdot (N/N_0)^{1,25} \tag{5}$$

³ Википедия. Библиотека Конгресса. http://ru.wikipedia.org/wiki.

⁴ Советский энциклопедический словарь М.: Советская энциклопедия, 1987.

¹ Капица С. П. Парадоксы роста: Законы глобального развития человечества. М.: Альпина нон-фикшин, 2012. 204 с.

² Ушаков К. Хранилище вечности // СЮ. 2007. №7.

⁵ Орехов В. Д. Прогнозирование в сложном окружении // XIV всероссийский симпозиум. М.: ЦЭМИ, 2013. №5. С. 107-110.

(здесь $N_0 = 100\ 000\ -$ условная начальная численность человечества). Погрешность, с которой аппроксимирует формула (5) объем знаний из таблицы 3 не превышает 10% в течение последнего столетия и не более 17% для 300 года до нашей эры.

<u>Производство</u>. Завершающим элементом цикла оборота знаний (рис. 3) является производство. За меру объема производства можно принять мировой валовой продукт — \mathbf{G} , а за производительность труда - его величину на душу населения $\mathbf{G/N}$. Данная величина примерно прямо пропорциональна числу людей 1 :

$$G/N \approx 221 + 1.04 \cdot 10^{-6} \cdot N$$
 (6)

(здесь G дано в международных долларах 1995 г.). Смысл этой зависимости становится понятен с учетом приведенной выше формулы (5), что позволяет получить более фундаментальную взаимосвязь (7):

$$G/N \approx 221 + 0,0095 \cdot Z^{0,8}$$
 (7)

Это означает, что средняя производительность труда одного человека пропорциональна объему знаний всего человечества в степени, близкой к единице. Важным результатом проведенного анализа является также то, что все элементы цикла оборота знаний, представленного на рис. 4, являются едиными для всего человечества.

5. Связь технологических революций с ростом объема знания

Приведенные выше выражения (3, 5) для определения численности — N и объема знаний человечества — Z позволяют сделать оценки соответствующих величин в различные технологические эпохи и выявить закономерности их изменения. Соответствующие данные приведены в таблице 4.

	Год	Технологическая революция (эпоха)	N, млн	Z, млн у.к.	Рост Z , раз	Рост N, раз
1	50	Начало христианской эры	0,10	0,11	1,54	1,41
2	630	Феодальная	0,14	0,18	1,54	1,42
3	1038	Предвестник ремесленной	0,20	0,27	1,54	1,41
4	1325	Ремесленная (проторенессанс)	0,29	0,42	1,54	1,41
5	1530	Возрождение	0,40	0,64	1,54	1,41
6	1674	Классическая наука	0,57	1,0	1,54	1,41
7	1776	Первая промышленная	0,80	1,5	1,54	1,41
8	1848	Вторая промышленная	1,13	2,3	1,53	1,41
9	1899	Предвестник НТР	1,59	3,6	1,53	1,40
10	1936	Научно-техническая	2,25	5,5	1,54	1,42
11	1962	Предвестник кибернетической	3,17	8,5	1,54	1,41
12	1980	Кибернетическая	4,45	13	1,53	1,40
13	2003	Предвестник биотехнологическ.	6,30	20	1,54	1,41
14	2043	Биотехнологическая	8,91	31	1,54	1,41

Таблица 4. Характеристики технологических эпох

Видно, что между технологическими революциями, даты которых представлены в таблицах 2, 4, численность человечества увеличивалась примерно в 1,41 раза, а объем знаний - в 1,54. Соответственно, дата революции, которая должна произойти в начале 21

.

¹ Коротаев А. В., Малков А. С., Халтурина Д. А. Математическая модель роста населения Земли, экономики, технологии и образования: Препринт. М.: ИПМ им. М. В. Келдыша РАН, 2005.

века, в таблице 4 указана равной времени достижения человечеством численности, на 40% превышающей число людей во время предыдущей технологической революции.

Выявленная закономерность свидетельствует о том, что геометрическая прогрессия, лежащая в основе периодичности технологических революций согласно формулам (1), (2) является следствием знаниевой природы этих революций и гиперболического закона роста человечества до 1960 г.

Поскольку объем появившегося до следующей революции нового знания превосходит на 50% все знание, накопленное за все предыдущие технологические эпохи, то для использования такого большого количества новых работников и знаний, а также преобразования их в новые инновации и материальные ценности, требуется радикальное преобразование всей мировой экономики, хозяйственного и общественного уклада. В результате, количественный рост объема знаний переходит в качественный скачок (революция), а он реализуется через мощный экономический кризис.

Следует отметить, что при приближении к 2000 году темп следования технологических революций и скорость роста населения Земли так ускоряются, что больше нельзя пренебрегать задержкой между рождением новых людей и началом их трудовой деятельности. В первом приближении внести соответствующую поправку можно, используя в формулах (4, 5) значения числа людей 20 лет назад и соответственно увеличив примерно в 1,5 раза числовой коэффициент. При этом они приобретают следующий вид:

$$Z \approx 2,2 \cdot 10^9 / (2045 - T)^{1,25}$$
 (8)

$$Z \approx 29.5 \cdot (N(T-20)/N_0)^{1.25}$$
 (9)

Эти формулы более точны при приближении к настоящему времени и менее точны в прошлом. В предположении, что революции происходят при условии увеличения объема знаний человечества в постоянное число раз, с помощью этих формул можно более точно спрогнозировать будущие даты технологических революций, причем изменения этих дат, как видно из таблицы 5, относительно невелики по сравнению с приведенными в таблице 4. Важно, что даты 20 века несколько сдвинуться в будущее, но не более чем на 10 лет, причем это смещение скорее делает систему дат, более соответствующей действительности.

	Гот	Технологическая	N,	Z,	Рост Z,	Рост
	Год	революция (эпоха)	млн	млн у.к.	раз	N, раз
9	1900	Предвестник НТР	1,59	4,37	1,50	1,40
10	1940	Научно-техническая	2,22	6,55	1,50	1,40
11	1969	Предвестник кибернетической	3,13	9,80	1,50	1,41
12	1990	Кибернетическая	4,26	14,7	1,50	1,36
13	2007	Предвестник биотехнологической	6,58	22,0	1,50	1,55
14	2031	Биотехнологическая	8,23	33,0	1,50	1,25

Таблица 5. Уточненный прогноз дат технологических революций 20-21 веков

Дата предвестника биотехнологической революции сдвигается на 2007 год, что лучше соответствует времени наступления кризиса в реальности (в 2008 году). Важно также, что время биотехнологической революции сдвигается с примерно 2043 года на 2031 год, то-есть значительно приближается к нашему времени. Данное приближение связано с тем, что формула (9) учитывает, что поколение людей, родившихся в начале демографического перехода (около 1980 г.) является наиболее массовым и только входящим в трудоспособный, творческий возраст. Поэтому оно внесет свой важный вклад в создание будущего знания человечества и будет трудоспособным до 2040 года.

Выводы

- 1. Показано, что продолжительность эпох между технологическими революциями соответствует геометрической прогрессии со знаменателем, величина которого для основных революций равна 0,5.
- 2. Между основными технологическими революциями происходят революции «предвестники», причем периоды между суммарной последовательностью революций описываются геометрической прогрессией со знаменателем равным $0.5^{0.5} \approx 0.707$.
- 3. Революция «предвестник» начинается с резкого роста патентования, а основная революция со спада, а затем роста.
- 4. Уточнены выражения для объема знаний человечества, в частности, для периода гиперболического роста человечества в 20 веке оно представлено формулой:

$Z \approx 2.2 \cdot 10^9 / (2045 - T)^{1.25}$

- 5. Между технологическими революциями происходит рост объема знания в 1,5 раза, и рост численности населения Земли на 40%.
- 6. Кризис, начавшийся в 2008 году, соответствует предвестнику биотехнологической революции.
 - 7. Уточнен прогноз даты биотехнологической революции 2031 г.

Литература

- 1. Bunch B. Hellemans A. The history of science and technology. Houghton Mifflin company. Boston -New York, 2004.
- 2. Википедия. Библиотека Конгресса. http://ru.wikipedia.org/wiki.
- 3. Глазьев С. Ю., Львов Д. С. Теоретические и прикладные аспекты управления НТП // Экономика и математические методы. 1986. № 5. С. 793-804.
- 4. Кадзума Т. Вечный дух предпринимательства. Практическая философия бизнесмена. М.: Московский бизнес, 1990. 222 с.
- 5. Капица С. П. Парадоксы роста: Законы глобального развития человечества. М.: Альпина нон-фикшин, 2012. 204 с.
- 6. Капица С. П. Гиперболический путь человечества. М.: Тончу, 2009.
- 7. Кондратьев Н. Д. Большие циклы конъюнктуры // Вопросы конъюнктуры. 1925. Т. І. Вып. 1. С. 28-79.
- 8. Коротаев А. В., Малков А. С., Халтурина Д. А. Математическая модель роста населения Земли, экономики и технологии: Препринт. М.: ИПМ им. М. В. Келдыша РАН, 2005.
- 9. Мировые показатели интеллектуальной собственности за 2012 год.: Доклад Всемирной организации интеллектуальной собственности. Женева. PR/2012/726, 2012.
- 10. Молчанов А. В. Развитие теории С. П. Капицы. Гипотеза сети сознания. 2009. http://oko-planet.su/science/scienceclassic/page,1,3371-a.v.-molchanov-razvitie- teorii-s.p.-kapicy.html
- 11. Немцов Э. Ф. Человечество становится всё изобретательнее. 2011. http://nemtsov.ners.ru/articles/chelovechestvo-stanovitsya-vs-izobretatelnee.html
- 12. Орехов В. Д. Прогнозирование в сложном окружении // Четырнадцатый всероссийский симпозиум. М.: ЦЭМИ, 2013. №5. С. 107-110.
- 13. Панов А.Д. Сингулярность Дьяконова // Русская Физическая Мысль. 2011. № 1-12. С. 68-78.
- 14. Системный мониторинг. Глобальное и региональное развитие / Отв. ред.: Халтурина Д. А., Коротаев А. В. М.: Либроком / URSS, 2010. С. 189–229.
- 15. Советский энциклопедический словарь М.: Советская энциклопедия, 1987.
- 16. Ушаков К. Хранилище вечности // СІО. 2007. №7.
- 17. Шумпетер Й.А. Теория экономического развития. М., 1982.
- 18. Экономическая теория: Учебник / Под ред. Видяпина В.И., Добрынина А.И., Журавлевой Г.П., Тарасевича Л.С.. М.: ИНФРА-М, 2007. 672 с.
- 19. Яковец Ю. В. Циклы. Кризисы. Прогнозы. М., 1999. С. 230-241, 252-261.